text.skipToContent text.skipToNavigation

Maximum quantity allowed is 999

请选择数量

TCO (trans-Cyclooctene) Derivatives: The Fastest Click Reaction Reagents

The TCO (trans-cyclooctene) moiety is known for its high internal strain on the double bond, facilitating the Strain-Promoted Inverse Electron-Demand Diels-Alder Reaction (SPIEDAC) with tetrazine derivatives. This reaction proceeds selectively even in the presence of various functional groups, making it applicable as a click chemistry tool. Click chemistry utilizing TCO does not require metal catalysts and exhibits rapid reaction rates as its primary feature. This click chemistry meets the criteria for bioorthogonal reactions (fast, selective, biocompatible, metal-free) and finds applications in a wide range of uses such as protein labeling and imaging.1,2,3,4)

Biotin-PEG3-Dz

The reaction rate between TCO and tetrazine derivatives is described as [TCO > TCO*] and [axial > equatorial]. However, in biological environments, especially in the presence of thiols, the stability is characterized as [TCO* > TCO].5)

Furthermore, recent reports have indicated that the reaction between 2-TCO derivatives and tetrazine derivatives can exhibit "click-to-release" reactions under metal catalyst-free conditions, showing promise for their role as prodrugs.6,7,8,9)

Based on these characteristics, we offer a variety of TCO derivatives useful for synthesis, including 4-nitrophenyl carbonate (NPC) esters, amines elongated with PEG, biotins, DBCOs, NHS esters, maleimide derivatives, and more.

Page Top

References

Page Top

会话状态
当前会话将在10分钟后超时,并返回主页。请点击按钮继续浏览。分钟后超时,并返回主页。请点击按钮继续浏览。

您的会话已超时,将返回至主页。