text.skipToContent text.skipToNavigation

Maximum quantity allowed is 999

请选择数量

N-杂环卡宾(NHC)配体 [过渡金属催化的交叉偶联反应]

N-Heterocyclic carbene (NHC) is a cyclic carbene species with two neighboring nitrogen atoms. NHC was discovered by Wanzlick et al. in 1968, and in 1991, it was isolated and structure determined by Arduengo et al. So, for their achievements, NHC is also called as the Wanzlick-Arduengo type carbene. Generally, NHC is hard to isolate as a single carbene monomer because it easily dimerizes or reacts with water to decompose. However, NHC is conformationally stabilized by introducing bulky substituents on the nitrogen atoms of NHC. NHC substituted by a mesityl groups or 2,6-diisopropylphenyl groups is commonly used as a ligand for organometallic complexes.
 A characteristic property of NHC ligands is their high coordinating ability caused by their bulkiness and strong electron-donating property. Their effect is stronger relative to trialkylphosphines, and allows the formation of metal-NHC complexes by ligand exchange reactions of metal-phosphine complexes with NHC ligands. In this way, NHC ligands strongly form complexes with some metals, and also produce coordinative unsaturation species by pushing out a trans position ligand coordinated with the metal center. Therefore, metal complexes coordinated by NHC ligands are highly active species but chemically stable and easy to handle, so they are expected to have a high turnover frequency.
 Metal-NHC complexes can be prepared by a complex-forming reaction of metal complexes having anionic ligands such as acetoxy ions with NHC which was previously prepared from imidazolium salts and bases. They can be also prepared via the carbene-exchange reaction of silver-carbene complexes prepared from silver(I) oxide and imidazolium salts. This method is effective to use when bases are unavailable for preparing NHC. Metal-NHC complexes have been used for various chemical transformations such as cross-coupling reactions, cycloaddition reactions and C-H bond activation reactions since they have been successfully applied in metathesis reactions. In addition, NHC is used as an organocatalyst for benzoin condensations and acyloin condensations via the umpolung process.

References

  • 1) S. P. Nolan, N-Heterocyclic Carbenes in Synthesis Wiley-VCH, Weinheim, 2006.
  • 2) J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis Univ Science Books, 2009.
35 项结果 显示
  • 1
  • 2
  • 3(current)
查看:  名单
产品编码 P1816
CAS RN 263874-05-1
纯度/分析方法 >98.0%(T)(HPLC)

产品编码 B6045
CAS RN 245679-18-9
纯度/分析方法 >97.0%(HPLC)(N)

产品编码 D3870
CAS RN 141556-42-5
纯度/分析方法 >97.0%(T)

产品编码 D5930
CAS RN 2459632-56-3
纯度/分析方法 >97.0%(T)(HPLC)

产品编码 B3157
CAS RN 258278-25-0
纯度/分析方法 >96.0%(HPLC)(N)

产品编码 D3621
CAS RN 286014-42-4
纯度/分析方法 >96.0%(N)

产品编码 D3623
CAS RN 286014-34-4
纯度/分析方法 >96.0%(N)

产品编码 B3506
CAS RN 258278-28-3
纯度/分析方法 >95.0%(T)(HPLC)

产品编码 D5401
CAS RN 675877-56-2
纯度/分析方法 >95.0%(T)(HPLC)

产品编码:   P1816 | 纯度/分析方法   >98.0%(T)(HPLC)

产品编码:   B6045 | 纯度/分析方法   >97.0%(HPLC)(N)

产品编码:   D3870 | 纯度/分析方法   >97.0%(T)

产品编码:   B3157 | 纯度/分析方法   >96.0%(HPLC)(N)

产品编码:   D3621 | 纯度/分析方法   >96.0%(N)

产品编码:   D3623 | 纯度/分析方法   >96.0%(N)

产品编码:   B3506 | 纯度/分析方法   >95.0%(T)(HPLC)

产品编码:   D5401 | 纯度/分析方法   >95.0%(T)(HPLC)

  • 1
  • 2
  • 3(current)
会话状态
当前会话将在10分钟后超时,并返回主页。请点击按钮继续浏览。分钟后超时,并返回主页。请点击按钮继续浏览。

您的会话已超时,将返回至主页。