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Introduction
 Ruthenium(II) thiolate complexes of type [(DmpS)RuCl(PR3)] (1a: R = i-Pr; 1b: R = p-FC6H4), introduced 
by Ohki, Tatsumi, and Oestreich, serve as air-stable precursors for cationic ruthenium(II) thiolate complexes 2 
(Scheme 1, top). These (formally) 16-valence-electron complexes are highly active bifunctional catalysts for 
the cooperative activation of H–H,[1,2] Si–H[3–12] as well as B–H[13] bonds. For catalytic applications, the air-
sensitive catalysts 2 can either be preformed or generated in situ by treatment of the corresponding ruthenium(II) 
chloride complex 1 with NaBArF

4 (ArF = 3,5-bis(trifluoromethyl)phenyl). The tethered coordination mode 
of the bulky 2,6-dimesitylphenyl thiolate (DmpS) ligand is crucial, stabilizing the coordinatively unsaturated 
ruthenium atom in 2 and also preventing formation of binuclear sulfur-bridged complexes. The polar Ru–S bond 
of these complexes combines Lewis acidity at the metal center and Lewis basicity at the adjacent sulfur atom. 
This structural motif allows for reversible heterolytic splitting of E–H bonds (E = H, Si, and B) across the polar 
Ru–S bond, generating a metal hydride and a sulfur-stabilized E+ cation (Scheme 1, bottom).[3] After transfer of 
the electrophile to a Lewis-basic substrate, the resulting neutral ruthenium(II) hydride can either act as a hydride 
donor (reductant) or as a proton acceptor (Brønsted base), thereby releasing dihydrogen. On the basis of this 
approach, complexes 2 emerged as broadly applicable catalysts for chemoselective reductions (hydrogenation 
and transfer hydrogenation,[1,2] as well as hydrosilylation[10,11]), dehydrogenative couplings (Si–C(sp2),[4–6] Si–
O,[7] Si–N,[8,9] and B–C(sp2)[13]), as well as hydrodefluorination reactions.[12]
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Scheme 1. Preparation of catalytically active ruthenium(II) thiolate complexes for cooperative E–H bond activation (E 
= H, Si, and B).
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Scope
1 - Hydrogenation and transfer hydrogenation of imines:[2]

 

2 - Regioselective electrophilic C–H silylation of indoles:[4]

 

3 – Regioselective electrophilic C–H silylation of pyridines:[5]

 

4 - Preparation of dibenzosiloles by intramolecular electrophilic C–H silylation:[6]
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5 - Direct formation of silyl enol ethers[7] and N-silylated enamines[8] by dehydrogenative coupling of enolizable 
ketones and ketimines with hydrosilanes:

 
6 - Dehydrogenative silylation of the N–H bond of indoles, pyrroles, carbazoles, and anilines:[9]

7 - Regioselective hydrosilylation of pyridines and benzannulated congeners:[10]
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8 - Chemoselective hydrosilylation of carbon dioxide:[11]

9 - Hydrodefluorination of CF3-substitued anilines:[12]

10 - Regioselective electrophilic C–H borylation of nitrogen-containing heterocycles:[13]
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