Make sure to sign up for an account today for exclusive coupons and free shipping on orders over $75!
Maximum quantity allowed is 999
Monomer for Conducting Polymers with High Optical Transparency and Stability
Conducting polymers are promising candidates for applications such as antistatic, electrode and battery materials.1) Representative conducting polymers such as PEDOT/PSS must be chemically doped to achieve high electrical conductivity. However, doped π-conjugated polymers have some problems: they exhibit poor optical transparency in the visible region, their conductivity depends on the dopant concentration, and the dopants can decrease the stability of the materials and the devices. Therefore, there is a need to develop charge-neutral conducting polymers without using dopants.
Recently, organic radical polymers with open-shell sites such as a TEMPO pendant groups have attracted much attention. Furthermore, Boudouris et al. synthesized a highly conducting organic radical polymer,2) PTEO (poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl)) by anionic ring-opening polymerization of 4-glycidyloxy-TEMPO (1). PTEO showed a more than 1000-fold increase in electrical conductivity than other organic radical polymers. They also reported that the polymer film exhibited high optical transparency in the visible region. It is therefore anticipated that such films will be utilized as electrically conducting materials with both high optical transparency and stability.
References
- 1) Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries
- 2) A nonconjugated radical polymer glass with high electrical conductivity
The prices are subject to change without notice. Please confirm the newest price by our online catalog before placing an order.
In addition, sales products changes with areas. Please understand that a product is not available when the product details page is not displayed.